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strings/black hole correspondence in AdS space by applying the Hagedorn thermodynamics.

We find the size of the corresponding black hole is a function of the AdS radius. For large

AdS radius a black hole far bigger than the string scale will form. On the contrary, when

the AdS and string scales are comparable a string size black hole will form. We also

examine strings on BTZ background obtained through SL(2, Z) transformation. We find a

tachyonic divergence for a BTZ black hole of string scale size.
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1. Introduction

The critical behavior of string theory near the Hagedorn temperature is known to be

relevant to the strings/black hole correspondence [1, 2]. Especially, the Hagedorn entropy

roughly matches the Bekenstein-Hawking one at the correspondence point, i.e. when the

Hagedorn and Hawking temperatures are of the same order. Moreover, the Hagedorn string

can be treated as a thermal scalar [3] due to the appearance of the Euclidean time-like unit-

winding tachyon [4 – 6]. The above results were done in the flat space. It is interesting to

understand the Hagedorn behavior in curved space where some intrinsic curvature scale

may play a role in understanding the α′ effect. Among these, the Anti-de Sitter (AdS)

Hagedorn string is the most interesting in light of the AdS/CFT correspondence.

At low energy, there is a Hawking-Page transition occurring at temperature THP ∼
1/lAdS such that the thermal AdS space condenses to AdS-Schwarzschild black hole. The

Hawking-Page temperature THP is far below the Hagedorn temperature β−1
s . However, if

we superheat the AdS strings above THP and approach β−1
s , we may wonder how the effect

of the curvature scale k = (lAdS/ls)
2 comes into play and affects the Hagedorn behavior.

Naively, the AdS curvature scale provides a finite size effect of the ambient space, so that

one would like to see if the strings/black hole correspondence principle in flat space can be

generalized to the AdS case. To give some clue in answering this question, we will compare
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the Hagedorn entropy and the Bekenstein-Hawking one in AdS space. We re-write the

Bekenstein-Hawking entropy of the AdSd+1-charged Schwarzschild black hole (d > 2) in

the following suggestive form

SBH =
d − 2

d − 1

1 + d
d−2

r2
+

l2AdS
− µ2

1 +
r2
+

l2AdS
+ µ2

βBHM, (1.1)

where M and r+ are the mass and size of horizon of the black hole. The inverse Hawking

temperature βBH and the chemical potential µ conjugate to the charge Q are written

respectively as

βBH =
4πl2AdSr+

(d − 2)(1 − µ2)l2AdS + dr2
+

, µ =
wd+1Q

2rd−2
+

(1.2)

where wd+1 is a constant related to the Newton constant in d + 1 dimensions. Note that

the pre-factor in front of βBHM in (1.1) is always of order one for any value of r+/lAdS,

that includes the charged Schwarzschild for r+/lAdS ∼ 0. This suggests that the underlying

density of states takes the form as ρ ∼ eβ(M)M , not as particle-like, i.e. ρ ∼ Mα that yields

S ∼ ln M .

Compare (1.1) with the expected Hagedorn entropy of string

Sstring = βs(k)M, (1.3)

we may have strings/black hole correspondence whenever βs ∼ βBH so that SBH ∼ Sstring.

This then generalizes the strings/black hole correspondence in the flat space to AdS space

(see section 5 for more arguments).

Similarly, for d = 2, the entropy of the BTZ black hole is

SBH = 2
1 − (lAdSµ)2

1 + (lAdSµ)2
βBHM (1.4)

where the Hawking temperature and the chemical potential conjugate to the angular mo-

mentum J are

βBH =
2πl2AdS

r+

1

1 − (lAdSµ)2
, µ = 4GNJ/r2

+, (1.5)

respectively, where GN is the Newton constant. This is also Hagedorn-like.

Motivated by the strings/black hole correspondence, it is interesting to explore the

Hagedorn behavior of AdS strings and extract the dependence of Hagedorn temperature

and the density of states on the AdS curvature scale. However, this is hard because

the AdS string theory usually has not been exactly solved. Despite that, in [9, 10] the

authors discuss the issue for AdS5 case by approximate methods. They argue that the

Euclidean AdS black hole can be thought as the condensation of the thermal scalar in

a compact space, which then have the Hagedorn-like density of states. More recently, a

nice paper [11] in developing the techniques of re-summing the worldsheet diagrams of

the AdS string in the Hagedorn regime has been done by introducing the double scaling
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limit, and the relation between Hagedorn behavior of AdS string and its dual Super-Yang-

Mills (SYM) theory is explicitly uncovered. Earlier discussions on the Hagedorn strings by

exploiting the Hagedorn behavior of the dual SYM theory [12] can be found in [13 – 15].

Instead, in this work we will discuss the Hagedorn behavior of the bosonic string theory

on Euclidean AdS3×M, which is exactly solvable [16] and whose 1-loop partition function

was given in [17]. By directly studying the partition function, we can see how the curvature

scale k affects the Hagedorn behavior, and extract Hagedorn temperature and the density

of states. Our main result is following. The Hagedorn inverse temperature and the leading

behavior of the density of states of the Hagedorn string in the micro-canonical ensemble

are

βs = βAdS :=

√

2π2α′(cint + 1)

3
= 4πls

√

k − 9/4

k − 2
(1.6)

and

Ω(E) ∝ eβAdSE

E(cint+1)/2+1
, (1.7)

respectively. In the above we have assumed cint-dimensional “internal space” M is flat and

non-compact. An essential difference from the flat space string is the appearance of infinite

new long string degrees of freedom [16, 17], and it is interesting to see how the Hagedorn

thermodynamics encodes these topological information as the case in flat space. Moreover,

for unitary internal CFT the value of k should be larger than 2 + 6
23 (> 9

4). This implies

that the Hagedorn temperature cannot be infinite.

We will organize our paper as follows. In section 2 we will briefly review the path

integral formulation of thermal AdS3 string theory, and set up our notations. In section 3,

we first discuss the pole structure of the integrand of the partition function in subsection

3.1. Due to the existence of the long string configuration spreading over the AdS space, the

pole structure is more complicated than the one for the flat space string. In subsection 3.2

we extract the Hagedorn temperature and the corresponding density of states. We obtain

the explicit k-dependence of the Hagedorn temperature, which is monotonically increasing

as the AdS curvature grows. Moreover, we can identify the contribution of the long string to

the Hagedorn spectrum. Based on the partition function in the Hagedorn regime obtained

in section 3, we discuss corresponding Hagedorn thermodynamics in section 4, which is in

close resemblance to the case in flat space. In section 5 we discuss some implication of

our results to a conjectured strings/black hole correspondence in AdS3 space. In [19] some

aspects on the correspondence between strings in AdS3 and BTZ black hole are uncovered

by taking a different approach in that the parameter k is varied. Instead here we examine

the theory by changing temperature β−1 with fixed k. In section 6, we investigate the

Hagedorn behavior of the strings in BTZ black hole by SL(2, Z) transformation acting on

the boundary torus of AdS3. In section 7 we briefly comment on the case with nonzero

chemical potential and conclude our work. In appendix we give a technical discussion about

the sub-dominant contribution to the Hagedorn partition function.
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Noted added in proof. In the final stage of drafting this paper, we are informed a

related on-going work [36].1

2. AdS3 string and its thermal partition function

The bosonic string theory in AdS3 space can be realized as a SL(2, R) WZW model and

is solvable. The spectra and 1-loop thermal partition function have been studied in [16]

and [17] respectively. In these papers, it was pointed out that the complete string spectra

are generated by the spectral flow symmetry of the theory. Moreover, the continuous

branches of the spectra represent the long string states extending along the radial direction

to the AdS boundary. These long string spectra-flowed states appear as poles in the

partition function, which are absent in the flat space case.2 These new poles will play an

essential role in the Hagedorn regime as will be shown.

We consider the string on AdS3 ×M, where an internal manifold M is described by

a sigma model that provides appropriate central charge. The worldsheet conformal field

theory contains three part, the one for AdS3, the one for M and the (b, c) ghosts. The

1-loop partition function has been studied in [17]. Here we will review it and set up the

convention of the notations. We first consider the AdS3 part and then combine the rest

twos.

The metric on Euclidian AdS3 in the global coordinates (ρ, t, θ), all of which are di-

mensionless, is

ds2

α′k
= cosh2 ρdt2 + dρ2 + sinh2 ρdθ2, (2.1)

where k = l2AdS/α
′ is a dimensionless number. It is convenient to use coordinates (V, V̄ ,Φ)

defined as

V =
√

α′k sinh ρeiθ, V̄ =
√

α′k sinh ρe−iθ, Φ =
√

α′k(t − ln cosh ρ), (2.2)

in which the metric becomes

ds2 = dΦ2 +

(

dV +
V dΦ√

k

) (

dV̄ +
V̄ dΦ√

k

)

. (2.3)

This becomes the flat metric in the limit k → ∞.3 Thermal AdS3 is defined by the following

identifications in the global coordinates

t + iθ ∼ t + iθ + β/
√

α′k + iµβ, (2.4)

were β is the inverse temperature of thermal AdS3 and iµ is the imaginary chemical po-

tential for the angular momentum. We impose the identifications

V ∼ V eiµβ , V̄ ∼ V̄ e−iµβ , Φ ∼ Φ + β. (2.5)

1See also [37].
2Strictly speaking, the poles exist at the boundary of moduli in the flat space case.
3In contrast, the metric in [17] does not reduce to flat space one in the limit k → ∞. Their coordinates

are related to ours in (2.2) by an overall scaling by
√

k.
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The WZW action in these coordinates is

S =
1

πα′

∫

d2z

[

∂Φ∂̄Φ +

(

∂V̄ +
∂ΦV̄√

k

)(

∂̄V +
∂̄ΦV√

k

)]

. (2.6)

Due to the identification (2.5), the boundary conditions on the worldsheet torus become

Φ(z + 2π) = Φ(z) + βn, Φ(z + 2πτ) = Φ(z) + βm,

V (z + 2π) = V (z)einµβ , V (z + 2πτ) = V (z)eimµβ , (2.7)

where n,m ∈ Z. As shown in [17] by adopting the technique in dealing with path integral

of H3 WZW model [20], one can exactly evaluate the partition function of the AdS sector,

and the result is

ZAdS(β, µ; τ) =
β(1 − 2/k)1/2

(4π2α′τ2)1/2

∑

(n,m)6=(0,0)

e−β2|m−nτ |2/4πα′τ2+2π(ImUn,m)2/τ2

|ϑ1(τ, Un,m)|2 , (2.8)

where

Un,m(τ) =
iβ(nτ̄ − m)

2π
√

α′

(

1√
k
− iµ

√
α′

)

, (2.9)

and the theta function is defined as

ϑ1(τ, U) = 2q1/8 sin(πU)

∞
∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm), (2.10)

where q = e2πiτ , z = e2πiU . Note that the (m,n) = (0, 0)-sector is modular invariant

and corresponding to zero temperature contribution, therefore we can neglect it in our

discussion about Hagedorn behavior. Moreover, in (2.8) there is a shift 2/k in the overall

factor (1 − 2/k)1/2 due to the chiral anomaly arising in the integration of V and V̄ . To

ensure reality of ZAdS, we should require k ≥ 2. Here we also like to point out that only the

temperature direction has the momentum zero-mode whose (Gaussian) integration giving

rise to the factor (4π2α′τ2)
−1/2 in (2.8). The radial and angular directions do not have

such kind of zero-modes, thus provide no corresponding factor.

The ghost part contribution to the partition function is

Zgh(τ) = |η(τ)|4 = (qq̄)2/24|
∞
∏

n=1

(1 − qn)|4. (2.11)

We also have the contribution from the internal space which will depend on the type

of internal space. Moreover, there is constraint on the central charge cint of internal CFT,

that is, the central charge cint should satisfy the anomaly free condition

cSL(2,R) + cint = 26. (2.12)

Since the central charge for the AdS3 sector is cSL(2,R) = 3 + 6
k−2 , thus the central charge

of the internal CFT should be

cint = 23 − 6

k − 2
. (2.13)
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For the internal CFT to be unitary, we should require cint ≥ 0, that is, we should constraint

k by a lower bound as following

k ≥ k0 = 2 +
6

23
. (2.14)

For simplicity and concreteness, we assume that the internal space M is flat and

non-compact and its corresponding CFT is described by cint free bosons.4 Therefore, the

corresponding partition function is

Zint(τ) = (qq̄)−cint/24
∑

h,h̄

D(h, h̄)qhq̄h̄ = Vint(4π
2α′τ2)

−cint/2|η(τ)|−2cint (2.15)

where Vint is the volume of the internal space. Here we also assume there is no non-trivial

cycle in M around which string can wind.

The total partition function is obtained by integrating the product of the above par-

tition functions over the fundamental region, i.e., F0, that is

Z(β) =

∫

F0

d2τ

4τ2
ZghZintZAdS

= Vint

∫

F0

d2τ

4τ2

β(1 − 2/k)1/2|η(τ)|4−2cint

(4π2α′τ2)(cint+1)/2

∞
∑

n,m=−∞

e−β2|m−nτ |2/4πα′τ2+2π(ImUn,m)2/τ2

|ϑ1(τ, Un,m)|2 ,(2.16)

where (n,m) 6= (0, 0) in the sum is understood.

As shown in [21, 22], using the fact that (n,m) transforms as SL(2, Z) doublet, we

employ the SL(2, Z) transformation to map the fundamental domain into the strip R :

τ2 > 0, |τ1| ≤ 1/2, so that we can keep only n = 0 term in the partition function, and

change the modular integration over F0 to the one over R.

Moreover, in dilute gas approximation it is enough to consider only the single string

partition function which is given by m = ±1:

Z1(β) = 2Vintβ(1 − 2/k)1/2

∫

R

d2τ

4τ2

|η(τ)|4−2cint

(4π2α′τ2)(cint+1)/2

e−(1−2/k)β2/4πα′τ2

|ϑ1(τ, U0,1)|2
, (2.17)

and the partition function of the string gas as follows (see e.g. [10])

Z(β) ≃ eZ1(β). (2.18)

In the next section we will extract the Hagedorn behavior from this single string

partition function.

3. AdS3 strings at Hagedorn temperature

In this section we would like to show the existence of the Hagedorn phase in AdS3 space by

the saddle-point approximation, and then extract the density of states out of the partition

4One can consider more general types of CFTs for internal space, however, the detailed Hagedorn

thermodynamics will depend on the choice. We just choose the free boson for explicit calculations in the

later sections.
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function, which is relevant in determining the Hagedorn thermodynamics. As for the flat

space string, these information are encoded in the UV/IR regime in the integrand of the

partition function over the strip domain R. However, as we will see that we have additional

poles in the moduli associated with the long strings than in the flat space, we need to check

if these poles make contribution to the Hagedorn density of states or not.

In the following we will set α′ = l2s = 1 for simplicity. This is equivalent to measure

the inverse temperature β by the unit string length ls. With this, recall that

U0,1 = −µβ

2π
− iβ

2π
√

k
=: U. (3.1)

3.1 The location of poles

From the expression of the single string partition function (2.17), the poles of the integrand

are encoded in the zeros of ϑ1(τ, U). Especially, we are interested in the Hagedorn regime,

which turns out to be in the limit of τ1, τ2 → 0. We will study the behavior of ϑ1(τ, U) and

extract the Hagedorn behavior. To this end, it is convenient to use a form after modular

transformation. The modular property of theta function5 yields

|ϑ1(τ, U)| = 2|τ |−1/2
∣

∣

∣
e−

πi
4τ e−

πiU2

τ sin

(

πU

τ

) ∞
∏

r=1

(1−e−
2πir

τ )(1−e−
2πi(r+U)

τ )(1−e−
2πi(r−U)

τ )
∣

∣

∣
.

(3.3)

We see that the theta function has infinite number of zeros which give rise to poles of the

partition function. We will investigate the locations of these poles over the strip domain.

Without loss of generality we require µ ≥ 0.

First of all, let us examine the poles coming from the zeros in the factors
∏∞

r=1(1 −
e−2πir/τ ) (which is common in Zint and Zgh). These poles also appear in the flat space

string. They locate on the τ1-axis as follows

τ1 =
r

w
, τ2 = 0, w = ±1,±2, · · · , r = 1, 2, · · · . (3.4)

Here we should only include the poles inside the strip domain, i.e. τ2 > 0, |τ1| ≤ 1/2. As

will be shown later, the integrand for the partition function has the saddle-point located

at τ1 = 0, which does not appear in (3.4). Therefore, these poles do not play essential role

at the Hagedorn regime.

Now we will consider the poles which are absent in the flat space string but arise here

due to the compactness of the AdS space. As shown in [16, 17] these additional poles are

associated with the long strings which transverse the AdS space. Let us examine the zeros

appear in the factors
∏∞

r=1(1 − e−2πi(r+U)/τ ). The exponents are

2πi(r + U) =
1

|τ |2
[

− (2πr − µβ) τ2 −
β√
k
τ1 − i

{

(2πr − µβ) τ1 −
β√
k
τ2

}]

. (3.5)

5Modular transformation is

ϑ1(τ, U) = i(−iτ )−1/2 exp(−πiU2/τ )ϑ1(−1/τ, U/τ ). (3.2)

– 7 –
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To yield a zero in the factors, the real part has to vanish, i.e.,

τ2

τ1
= − β

(2πr − µβ)
√

k
, r = 1, 2, · · · (3.6)

which define “pole lines” of slope τ2/τ1 labeled by r. The locations of poles on each pole

line are determined by the condition that the imaginary part of (3.5) should be 2πw,w ∈
Z. Together with the condition (3.6), it is easy to see that the poles from the factor
∏∞

r=1(1 − e−2πi(r+U)/τ ) are located at

τ1 = − 1

2πw
(2πr − µβ), τ2 =

1

2πw

β√
k

, w = 0, 1, 2, · · · , r = 1, 2, · · · . (3.7)

Again we should only include the poles inside the strip domain. For example, if µ = 0, the

w = 0 pole should be ruled out.

Similarly, we can read off the pole lines and the poles on them from the factors in
∏∞

r=1(1 − e−2πi(r−U)/τ ). The pole lines have the slope

τ2

τ1
=

β

(2πr + µβ)
√

k
, r = 1, 2, · · · (3.8)

and the poles locate at

τ1 =
1

2πw
(2πr + µβ), τ2 =

1

2πw

β√
k
, w = 0, 1, 2, · · · , r = 1, 2, · · · . (3.9)

For µ = 0 the w = 0 pole is outside the strip domain.

Finally, the sin factor has a pole line with slope

τ2

τ1
=

1

µ
√

k
(3.10)

on which the poles are distributed as

τ1 =
µβ

2πw
, τ2 =

1

2πw

β√
k
, w = 0, 1, 2, · · · . (3.11)

For µ = 0, the poles are understood to be located on the positive τ2-axis, and w = 0 pole

is located at τ1 = 0, τ2 = ∞.

It is interesting to note that the pattern of the pole lines is invariant under r → r ± 1,

this implies that it is enough to consider the range 0 ≤ µβ < 2π. This is consistent with

our earlier requirement in (2.5) that µβ is an angular parameter.

3.2 Evaluating the partition function

It will turn out that the information about the high temperature behavior of string is

encoded in the small τ2 region in the moduli integral (2.17). The asymptotic behavior of

its integrand indeed depends on how it approaches the origin. We decompose the strip

– 8 –
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Figure 1: The pole structure of the integrand of the partition function. The strip domain R is

divided into many pairs of the nearly-triangular-strip sub-domains labeled by ∆s.

domain R into pairs of the smaller nearly-triangular stripes in between the pole lines as

follows:

∆s :
(−2π(s + 1) + µβ)

√
k

β
≤ τ1

τ2
<

(−2πs + µβ)
√

k

β
,

(2πs + µβ)
√

k

β
≤ τ1

τ2
<

(2π(s + 1) + µβ)
√

k

β
, s = 0, 1, . . . (3.12)

where poles sit on the boundaries of each ∆s. The integration can be decomposed as

∫

R
d2τ · · · =

∞
∑

s=0

∫

∆s

d2τ · · · (3.13)

and the partition function is also decomposed accordingly

Z1(β) =

∞
∑

s=0

zs(β). (3.14)

The integrand in each domain takes different asymptotic form. This integral is divergent

due to the poles in the integrand, so we should regularize it to apply a well-defined saddle

point approximation to extract the Hagedorn behavior. To do so, we formally remove the

neighborhood of the poles of the integrand in the τ2 integral. The explicit form of the

regularized integral is in piecewise form as follows:

∫ ∞

0
dτ2 · · · = lim

ǫ→0

∞
∑

w=0

∫
β

2π
√

k

1
(w+ǫ)

β

2π
√

k

1
(w+1−ǫ)

dτ2 · · · . (3.15)
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Later on we will see that these divergences from poles corresponds to the infinite warped

factor felt by the long strings at spatial infinity, thus is the IR divergence. Moreover, we

should point out that the form of the IR-regulator is not unique and here we choose the form

for our own convenience. For example, another choice is
∫

β

2πw
√

k
−ǫ

β

2π(w+1)
√

k
+ǫ

dτ2 · · · . However, it

is easy to convince oneself that the different choice of the IR-regulator will not affect the

leading contribution to the partition function, which is proportional to ln ǫ.

Note the above prescription holds for any µ. However, in the following we will set µ to

zero for simplicity, and then evaluate the partition function for each domain ∆s. Especially

we will try to extract its behavior near the Hagedorn regime. We evaluate the contribution

to the partition function from the sector ∆0 which turn out to dominate over the one from

∆s 6=0 near the Hagedorn temperature. In appendix we argue that the contribution from

∆s 6=0 is sub-dominant.

3.2.1 Partition function from s = 0 sector

Now we will extract the Hagedorn behavior from the sector ∆0 which covers the τ2-axis and

a series of poles on it due to the sin factor in ϑ1, i.e. τ1 = 0, τ2 = β

2πw
√

k
with w = 0, 1, · · · .

The contribution to the partition function from sector ∆0 is z0, near the origin τ1, τ2 ≃
0 we can approximate z0 by using the modular property

|ϑ1(τ, U)| ≃ 2|τ |−1/2
∣

∣

∣
e−(U2+1/4)πτ2/|τ |2 sin

(

πUτ̄

|τ |2
)

∣

∣

∣
(3.16)

and

|η(τ)| ≃ |τ |−1/2e
−πτ2
12|τ |2 , (3.17)

where we have used the fact that the factor 1 − e−2πir/τ goes to 1 as long as

|τ1|
τ2

= fixed <
2π

√
k

β
, as τ2 → 0. (3.18)

We will see that the saddle point is located at τ1/τ2 = 0 and therefore the above constraint

is consistently satisfied.

The asymptotic behavior of the integrands ZAdS,Zint and Zgh are then approximated

as follows:

ZAdS ≃ β(1 − 2/k)
1
2

2(4π2τ2)1/2
e
− (1−2/k)β2

(4πτ2)
|τ |e(1− β2

π2k
)

πτ2
2|τ |2

∣

∣

∣
sin iβτ̄

2
√

k|τ |2

∣

∣

∣

2 , (3.19)

Zint ≃ Vint

(4π2τ2)cint/2
|τ |cinte

cintπτ2
6|τ |2 , (3.20)

Zgh ≃ |τ |−2e
−2πτ2
6|τ |2 . (3.21)

Note that the leading exponent in (3.20) is universal for compact unitary CFTs by the

property of the modular invariance of the partition function [18]. Moreover, it is easy

to verify for oneself from the calculations below that the Hagedorn temperature will only
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depend on this exponent and will be universal.6 On the other hand, the other Hagedorn

thermodynamic quantities will depend on also the non-universal part of (3.20).

Under the above approximation, the partition function becomes

z0(β) ≃ Vint

2
lim
ǫ→0

∞
∑

w=0

∫
β

2π
√

k

1
(w+ǫ)

β

2π
√

k

1
(w+1−ǫ)

dτ2

4τ2

β(1 − 2/k)1/2

(4π2τ2)(cint+1)/2
exp

[

−(1 − 2/k)β2

4πτ2

]

I(τ2) (3.22)

where

I(τ2) :=

∫ 1/2

−1/2
dτ1|τ |cint−1

∣

∣

∣
sin

(

iβτ̄

2
√

k|τ |2

)

∣

∣

∣

−2
exp

[

(cint + 1 − 3β2/kπ2)

6

πτ2

|τ |2
]

. (3.23)

Then we will evaluate the τ1 integral with fixed τ2 by the saddle-point approximation. Let

us introduce x := τ1/τ2, and we can write

I(τ2) = τ cint
2

∫ 1/2τ2

−1/2τ2

dx exp(−G(x; τ2)) (3.24)

where

G(x; τ2) = −cint−1

2
ln(1+x2)+2 ln

∣

∣

∣
sin

(

β(1 + ix)

2
√

kτ2(1+x2)

)

∣

∣

∣
− π(cint + 1 − 3β2/kπ2)

6τ2(1 + x2)
. (3.25)

It is easy to see that

G′(x; τ2) =
(1 − cint)x

1 + x2
+

π(cint + 1 − 3β2/kπ2)x

3τ2(1 + x2)2

+ cot

(

β(1 + ix)

2
√

kτ2(1 + x2)

)

β

2
√

kτ2

[−2x(1 + ix)

(1 + x2)2
+

i

1 + x2

]

+ c.c. (3.26)

Though the expression (3.26) looks rather complicated, it is straightforward to find that

x = 0 is an extremal point such that G′(0; τ2) = 0. Thus we have

I(τ2) ≃ τ cint
2

∣

∣

∣
sin

(

β

2
√

kτ2

)

∣

∣

∣

−2
exp

[

π(cint + 1 − 3β2/kπ2)

6τ2

]

√

2π

G′′(0; τ2)
. (3.27)

Note that as in the case of flat space the 1/τ2 factor in the exponential of (3.27) provides

the required form for the Hagedorn partition function when combining with the similar

factor in (3.22), but the additional dressing sin factor encodes the pole structure of the

partition function rendering the discrete Hagedorn spectrum, which is different from the

case in flat space.

Furthermore, to ensure that x = 0 is a stable saddle point we should require

G′′(0; τ2)=1−cint+
π

3τ2

(

cint+1− 3β2

kπ2

)

− β

2
√

kτ2

[

4 cot

(

β

2
√

kτ2

)

− β/
√

kτ2

sin2(β/2
√

kτ2)

]

> 0.

(3.28)

6We thank the authors in [36] for pointing this out.
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Since G′′(0; τ2) is positive only for small τ2, we need to impose a lower bound wmin in the

w-summation of (3.22) or equivalently an upper bound τmax
2 in the τ2 integration, so that

G′′(0, τmax
2 ) = 0 (3.29)

then

wmin(β) := 1 +

[

β

2πτmax
2

√
k

]

(3.30)

where [· · · ] is the Gauss’s symbol. This then excludes the w = 0 mode which locates at

τ2 = ∞, thus wmin ≥ 1.

Numerically we find that there are two more unstable extremal points other than

x = 0. However, in the τ2 → 0 limit, i.e. the Hagedorn regime, they are sub-dominant

in the partition function as compared with the contribution from x = 0. This is similar

to the flat space string in which the subdominant saddle points give only power law of τ2

for the corresponding I(τ), thus it is not compatible with the exponential blow-up of the

Hagedorn spectrum.

The partition function can then be put into a form which highlights the Hagedorn

behavior as follows

z0(β) ≃ Vintβ(1 − 2/k)1/2

8(4π2)(cint+1)/2
lim
ǫ→0

∞
∑

w=wmin

∫
β

2π
√

k

1
(w+ǫ)

β

2π
√

k

1
(w+1−ǫ)

dτ2τ
(cint−3)/2
2

√

2π

G′′(0; τ2)

×
∣

∣

∣
sin

(

β

2
√

kτ2

)

∣

∣

∣

−2
exp

[

−β2 − β2
AdS

4πτ2

]

, (3.31)

where

βAdS :=

√

2π2(cint + 1)

3
= 4π

√

k − 9/4

k − 2
. (3.32)

Recall that we have set α′ = 1. The exponent factor in (3.31) takes the standard form

of the Hagedorn spectrum, namely, it is suppressed as τ2 → 0 if β > βAdS, we can then

identify βAdS as the inverse Hagedorn temperature of string theory in AdS3 × M.7 This

Hagedorn temperature is universal for compact internal unitary CFTs.

The result shows that the Hagedorn temperature is monotonically decreasing as k

grows. In the large k limit this becomes the Hagedorn temperature in the flat space, as it

should be. In the small k regime the α′ effect on the background is important since the

AdS curvature scale is large. We find that there is a lower bound for k, i.e. k ≥ 9/4 in

order to have Hagedorn behavior occurring at finite critical temperature 1/βAdS, otherwise

β2
AdS is negative. It is interesting to see that k0 ≈ 2.26 in (2.14) for unitary internal CFT

is slightly larger than 9/4. This means that the Hagedorn temperature cannot be infinite

if the internal CFT is unitary. The maximal Hagedorn temperature is about 0.388 l−1
s at

k = k0.

7For similar arguments on the effect of background fields on the Hagedorn temperature, see e.g. [23, 24].
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In summary, though the inverse Hagedorn temperature in AdS3 depends on k, it is of

order of the string scale for all physical values of k consistent with the unitarity constraint

of the internal CFT.

Furthermore we can approximate (3.28) in the region where τ2 is very small, and the

result is8

G′′(0; τ2) ≃ 2

[

β/2
√

kτ2

sin(β/2
√

kτ2)

]2

. (3.34)

The partition function then becomes

z0(β) ≃
√

πVint(k − 2)1/2

4(4π2)(cint+1)/2
lim
ǫ→0

∞
∑

w=wmin

∫
β

2π
√

k

1
(w+ǫ)

β

2π
√

k

1
(w+1−ǫ)

dτ2τ
(cint−1)/2
2

exp
[

−β2−β2
AdS

4πτ2

]

∣

∣

∣
sin

(

β

2
√

kτ2

) ∣

∣

∣

. (3.35)

It is convenient to change the variable by introducing y := β/2π
√

kτ2 so that the poles due

to the sin factor locate at y = w,w = wmin, wmin + 1, · · · , which is now excluded from the

integration by the cut-off. The partition function becomes

z0 ≃
√

πVint(k − 2)1/2

4(4π2)(cint+1)/2
lim
ǫ→0

∞
∑

w=wmin

∫ w+1−ǫ

w+ǫ

dy

y

(

β

2π
√

ky

)(cint+1)/2 exp
[

−β2−β2
AdS

2β

√
ky

]

| sin (πy) | .

(3.36)

From this, we can formally read off the (single-string) density of state of the Hagedorn

spectrum for the thermal AdS3 string when β ∼ βAdS as follows

ρAdS3(E) ∼ E− cint+3

2

∣

∣

∣
sin

(

πE√
k

)

∣

∣

∣

−1
eβAdSE. (3.37)

Compare with the flat space Hagedorn density of states, there is an additional sin factor in

ρAdS3 which renders infinite number of poles in it. From the spectrum analysis done in [17],

we know that these poles are related to the long string configurations which are absent in

flat space. The divergences associated with these poles are nothing but the infinite AdS3

warped factor at spatial infinity felt by the space-like long strings, which corresponds to

the infinite AdS3 volume. Note that the IR divergence of the flat space string is explicitly

represented by the zero modes in the path-integral. On the contrary, in AdS space the zero

modes are not explicit in the WZW model formulation due to the lack of the translational

invariance in the radial direction, and we need to extract the IR divergence corresponding

to the infinite AdS volume by manipulating the integration over poles in (3.36).

It is obvious that the main contribution in each integration in (3.36) is given at the

end points of the integration and it behaves as ln ǫ which relates to the aforementioned IR

8However, this is not the leading contribution when we consider the flat limit k → ∞. The leading

behavior in the limit is given by

G′′(0; τ2) ≃
π

3τ2

„

cint + 1 −
3β2

kπ2

«

. (3.33)
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divergence in the partition function. To see this explicitly, we expand the sin factor around

y = w with new integration variable t = y − w:

| sin (π(w + t)) | = |(−1)wπt + · · · |. (3.38)

Therefore we can extract the divergence of the partition function as

lim
ǫ→0

(
∫ −ǫ dt

|(−1)wπt| +

∫

ǫ

dt

|(−1)wπt|

)

Y (w + t) ∼ lim
ǫ→0

(

2

π
ln ǫ

)

Y (w), (3.39)

where

Y (y) =

√
πVint(k − 2)1/2

4(4π2)(cint+1)/2y

(

β

2π
√

ky

)(cint+1)/2

exp

[

−β2 − β2
AdS

2β

√
ky

]

(3.40)

which has no singularity at y = w. In this way, we can extract the IR divergence in the

partition function as

z0(β) =
| ln ǫ|Vint(k − 2)1/2

2
√

π

(

β

8π3
√

k

)

cint+1

2
∞
∑

w=wmin

w− cint+3

2 exp

[

− β2−β2
AdS

2β

√
kw

]

+O(ǫ0).

(3.41)

We now have a discrete spectrum after extracting the IR divergence. In fact, the

discrete spectrum can be interpreted as the long strings as follows. Near the Hagedorn

temperature, we have

δβ2 := β2 − β2
AdS ≃ 2βAdS(β − βAdS). (3.42)

We can introduce a parameter p so that we can rewrite (3.41) in to the following form by

neglecting the overall factor

z0(β) ∼
∫ ∞

−∞
dp

∑

w

w−(cint+4)/2e−(β−βAdS)E (3.43)

where

E =

(

w +
p2

wk

)√
k. (3.44)

This is nothing but a piece of the long strings’ spectrum considered in [16, 17] and p can

be interpreted as the momentum along the radial direction for the long strings.9 This

supports our interpretation of the IR divergence as the AdS volume felt by the long string

at spatial infinity due to the fact that they can be at any radial position.

On the other hand, as β ∼ βAdS we can also convert the discrete sum into a continuum

one by introducing the scaling parameter u := wδβ2 so that

∞
∑

w=wmin

=
1

δβ2

∞
∑

w=wmin

δβ2 =
1

δβ2

∫ ∞

δβ2wmin

du. (3.45)

9The additional
√

k factor in (3.44) is due to our different normalization in (2.2) from the one in [16, 17].
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In this way, we can carry out the sum/integral to get

z0(β) =
| ln ǫ|Vint(k − 2)1/2

2
√

π

(

βAdS(β−βAdS)

8π3

)

cint+1

2

Γ

(

− cint+1

2
, (β−βAdS)

√
kwmin(β)

)

,

(3.46)

where Γ(a, x) :=
∫ ∞
x ta−1e−tdt is the incomplete gamma function.

Though wmin is a function of β which may complicates thermodynamics, at Hagedorn

regime one has

wwin(β) ≃ wmin(βAdS) (3.47)

which is nothing but a number and will not affect the Hagedorn critical behavior. Moreover,

as β ∼ βAdS the wmin-determining equation (3.29) can be solved for τmax
2 and wmin. It is

easy to verify that wmin = 1 for k0 < k ≤ ∞ for which there exists the Hagedorn divergence.

4. Thermodynamics of hagedorn AdS3 strings

Summarizing the results in the previous sections, the main contribution to the partition

function in the Hagedorn regime is from the s = 0 sector, which encodes the long string

spectrum in the density of states. The asymptotic behavior of the resulting single-string

partition function is

z0(β) = | ln ǫ|Vint(k − 2)1/2

2
√

π

(

βAdS(β − βAdS)

8π3

)

cint+1

2

Γ

(

−cint + 1

2
, (β − βAdS)

√
kwmin

)

.

(4.1)

Note that wmin = 1 as just mentioned.

If we assume the single string dominance and Bose statistics of the string gas, the free

energy FAdS(β) of the multi-string gas is nothing but

FAdS = − 1

β
ln Z ≃ − 1

β
z0 (4.2)

where Z is the multi-string partition function given in (2.18). From this, we can extract

the thermodynamics of the Hagedorn string gas in AdS3.

Before we discuss the thermodynamic quantities of AdS strings from the free energy,

it is interesting to compare the form of (4.1) and (4.2) with the one for thermal bosonic

string on S × Rd [25], namely,

βFflat = −CVint(β − βH)d/2Γ

(

− d

2
, (β − βH)m0

)

(4.3)

where C is some constant and d is the number of non-compact dimensions, i.e. neglecting

the winding modes. We see that FAdS and Fflat have the same critical behavior and sin-

gular structure except that the infrared cutoff m0 in the flat space is replaced by
√

kwmin.

Therefore, the parameter wmin = 1 plays the role of the infrared cutoff in the AdS space,

which cannot be taken to zero.
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Based on the above similarity, we can separate the singular and regular parts of the free

energy and extract the critical behavior of the free energy as in the flat space string [25, 26],

and the result is

βFAdS ≃ −h(β)(β − βAdS)(cint+1)/2 + regular part (4.4)

where

h(β) = (−1)cint/2+1CVint| ln ǫ|Γ
(

cint + 1

2
+ 1

)−1

ln[(β − βAdS)
√

k] (4.5)

for (cint + 1)/2 is integer, and

h(β) = (−1)cint/2CVint| ln ǫ|Γ
(

cint + 1

2
+ 1

)−1

(4.6)

for (cint + 1)/2 is non-integer.

From (4.4) we can derive the other thermodynamic quantities in either canonical en-

semble or micro-canonical ensemble, for the later we need to evaluate the density of states

by the inverse Laplace transform of the multi-string partition function, i.e.,

Ω(E) =

∫ L+i∞

L−i∞

dβ

2πi
eβEZ(β) (4.7)

where the contour (denoted by L) is chosen to be to the right of all singularities of Z(β) in

the complex β plane. Following [3, 25, 26], the resulting density of state for cint + 1 ≥ 3 is

Ω(E) = CV
eβAdSE+γ0V

E(cint+1)/2+1
(1 + O(1/E)) (4.8)

and the entropy is

S = ln Ω(E) = βAdSE + nHV + sub-leading terms (4.9)

where V is the volume of the cint+1 “non-compact” dimensions, and γ0 and nH are constant

of order lcint+1
s . For 0 ≤ cint + 1 < 3, the density of states is more complicated and the

details can be found in [25, 26]. Moreover, the specific heat evaluated from (4.8) is negative

and divergent at Hegedorn temperature. This implies that the Hagedorn thermodynamics

is not well-defined, and one should compactify the cint−dimensional internal space because

the compactification will introduce the sub-leading Hagedorn singularities then make the

thermodynamic ensembles well-defined. For more discussions on the related issues, see e.g.

[3, 25 – 27], and [28] provides an example for explicit calculation.

Another interesting point about the Hagedorn thermodynamics is how it encodes the

topological information of the underlying spacetime [25, 26]. More precisely, the number

of non-compact dimensions of the underlying spacetime (in the sense of neglecting the

corresponding winding modes) is encoded in the critical exponent of the free energy as

shown in (4.3) and (4.4). In the AdS case, we see that the number of “non-compact

dimensions” encoded in (4.4) is cint + 1 in analogue to number d appearing in (4.3) for

the flat space string. The appearance of cint is because we have assumed the internal
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space to be non-compact with the translational zero-modes encoded in the exponent of the

corresponding partition function (2.15). Then one will wonder what does the extra one

correspond to? We think it should correspond to the radial direction of the AdS3 and the

reason is as follows: Recall that in the AdS partition function (2.8), there is no zero-mode

associated with the radial and angular directions as can be read from the exponent of τ2

in (2.8). However, we see that in the Hagedorn regime the long string degrees of freedoms

appear in the spectrum (3.44) extracted from the Hagedorn partition function (3.41), where

the parameter p in (3.44) is the zero-mode associated with the momentum along the radial

direction. The appearance of the finite energy space-like long strings (3.44) is due to the

balance of the string tension and NS-NS B field near the AdS boundary [16], this makes

the radial direction effectively non-compact for the Hagedorn long strings.

5. Strings/black hole correspondence principle in AdS

In formulating the strings/black hole correspondence in flat space, we expect that the

correspondence point happens as the size of black hole is of order of the string scale [1, 2],

and the Hagedorn entropy of the free thermal strings and the Bekenstein-Hawking entropy

of black hole match up to a factor of order unity. However, without taking into account of

the string interaction, highly exited thus widely spreading string configurations dominate

at Hagedorn regime so that it is incompatible with the Hoop conjecture of black hole

formation, thus one should take into account of shrinking of the string due to the self-

interactions [30, 31]. We may think that the Jeans instability of the Hagedorn strings [6]

will induce a formation of black hole, with its Hawking temperature equals to the Hagedorn

temperature so that the entropies match. However we regard whether the entropy of self

interacting string remains the same as that of the free string is an open problem. In [29],

an alternative interpretation without invoking the self-interaction has been proposed as

follows: the thermal string is considered to be the stretched horizon of the black hole after

tachyon condensation.10 At the correspondence point where the Hawking temperature and

the Hagedorn one match, the size of the stretched horizon spreads almost all over the

space other than a small region around the vicinity of black hole which has a small size

comparable to the string scale. Therefore, the black hole is indistinguishable from the gas

of strings and the entropy of thermal strings explains the black hole entropy.

Following the discussions in flat space, it is tempting to formulate a strings/black hole

correspondence in AdS space by disregarding the dynamical issues discussed in [30, 31].

We can then assume that the strings/black hole correspondence in AdS space happens

when the Hagedorn temperature is of order of the Hawking temperature. It will be fulfilled

automatically that the Hagedorn entropy becomes of order of the Bekenstein-Hawking

entropy if the above condition holds, as can be seen from our discussions in the Introduction.

Since the stable AdS black hole has positive specific heat, that is, the larger black hole

has higher Hakwing temperature. Then, the correspondence principle implies that the

10Before the condensation the local temperature on the region of the stretched horizon is above the

Hagedorn temperature and the thermal tachyon develops.
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β

r+
O lAdS

√

d − 2

d
lAdS

2πlAdS

d − 1

2πlAdS
√

d(d − 2)

Figure 2: The black hole inverse temperature as a function of Schwarzschild radius in d ≥ 2. For

d > 2 there are two solutions which correspond to the small and the large black hole. In d = 2,

there is no solution corresponding to the small black hole. There is only a large (BTZ) black hole

solution.

Hagedorn strings in AdS will condense into the black hole with the size far larger than the

string scale and keeping their entropy. This is quite different from the flat space case.

On the other hand, we have obtained the Hagedorn temperature of strings in AdS3,

which has a nontrivial dependence on the AdS curvature scale k. This k-dependence is

new to the flat space Hagedorn temperature. It is then interesting to see the implication

of this k-dependence to the above conjectured correspondence principle.

First of all, we briefly recall the AdS Schwarzschild black hole in d + 1 dimensions

(d ≥ 2) [7, 8]. The metric of the black hole for d > 2 is given as

ds2 = f(r)d2τ + f−1(r)d2r + r2dΩ2 (5.1)

where f(r) = 1+r2/l2AdS−wd+1M/rd−2 with wd+1 = 16πGd+1/(d−1)Ωd−1 and Gd+1 is the

Newton constant in d+1 dimensions and Ωd−1 is the volume of unit (d−1)-sphere. One may

immediately read off its inverse Hawking temperature as a function of the Schwarzschild

radius r+ which is the largest solution of f(r) = 0:

βBH(r+) =
4πr+

d − 2

1

1 + d
d−2

r2
+

l2AdS

. (5.2)

We plot this function in figure 2. Obviously, the black hole solutions exist only above

the critical temperature β−1
c =

√

d(d − 2)/2πlAdS. Below this temperature only thermal

AdS space can exist. However, if the temperature is above the critical one there exist

two black hole solutions. One is a small black hole which would reduce to an ordinary

Schwarzschild black hole in the limit lAdS → ∞. It has negative specific heat and thus

is unstable. Another is a large black hole which is the characteristic one in the AdS

space. This has positive specific heat and is stable (eternal black hole). Moreover, at the
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∼ 5.51
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Figure 3: r+/ls v.s. k at the correspondence point.

temperature β−1
HP = (d−1)/2πlAdS the saddle point of large black hole becomes comparable

to that of the thermal AdS space and above the temperature it dominates the path integral.

This is the Hawking-Page transition from thermal AdS to Schwarzschild black hole phase.

It should be noted that the two types of black hole solution exist only for d > 2. For d = 2,

we would like to emphasize that β−1
c = 0, there is no small black hole saddle point, only

BTZ black hole solution exists at any temperature [32, 33]. This may be seen easily by

taking d → 2 limit in figure 2.

Let us now apply the strings/black hole correspondence to the Hagedorn strings in

AdS space. As stated earlier, if we define the correspondence point at which the Hawking

and Hagedorn temperatures match, i.e., βBH(r+) = βs, then the entropies of both sides

coincide if string entropy is given by βsM . Accordingly, we can determine the size of the

corresponding black hole at the correspondence point. In flat space, the correspondence

principle yields a black hole of string scale. However, in the AdS case there are two types of

black holes to which strings can correspond when we specify the string temperature. This

can be easily seen from (5.2) by assuming either r+ ≪ lAdS or r+ ≫ lAdS. Upon imposing

the correspondence condition βBH (r+) = βs, for r+ ≪ lAdS (small black hole with negative

specific heat) we get

r+ ≃ d − 2

4π
βs

(

1 +
d(d − 2)

(4πlAdS)2
β2

s

)

≪ lAdS, (5.3)

and for r+ ≫ lAdS (large black hole with positive specific heat) we have

r+ ≃ 4π

d

l2AdS

βs
(5.4)

which implies lAdS ≫ βs. We see that in both cases, we have

lAdS ≫ βs. (5.5)
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This can be seen as a prediction of the correspondence principle in AdS space in the two

extreme cases we have explained above even without knowing the detailed k-dependence

of βs. Moreover, based on the semi-classical gravity the large black hole is more favored

than the small one [7, 8], so we may expect the thermal Hagedorn strings will dynamically

condensed into a large black hole.

The validity and the outcome of the above argument will depend on the explicit k-

dependence of the Hagedorn inverse temperature βs which is unknown other than d = 2

case obtained in this paper. Therefore, we apply our result to the correspondence in AdS3

space (d = 2): Even though the metric in d = 2 case is slightly different from (5.1), the

temperature-radius relation (5.2) still holds and we have

βBTZ =
2πl2AdS

r+
=

2πkl2s
r+

(5.6)

where recall k = (lAdS/ls)
2. Using (3.32) and (5.6), the correspondence condition βBTZ =

βAdS yields

r+

ls
=

k

2

√

k − 2

k − 9/4
. (5.7)

This relation is plotted in figure 3. It is interesting to see that there is a minimum size of

BTZ/string state with r+(k)/ls ∼ 1.69 if k = (35 +
√

73)/16 ∼ 2.72, however, we do not

have a physical understanding for such the minimum.

Obviously, for large k the size of the BTZ black hole at the correspondence point

is far larger than the AdS as well as the string scale. This is in contrast to the case

for the small black hole in AdS or flat space higher than the three dimensions, in which

the corresponding black hole has a size comparable to the string scale. In the limit of

k → ∞ the Hagedorn temperature reduces to that of the string in the flat space but the

corresponding black hole has infinite size and is no longer the solution of Einstein equation.

We only have the thermal flat space as a solution. For the case that k is infinitely large but

still finite, the space becomes almost flat but still we have a large black hole phase. This

phase might be the end point of catastrophic Hagedorn divergence through the thermal

tachyon condensation in almost flat space.

On the other hand, for small k close to k0 ∼ 2.26, i.e., its minimum value for unitary

internal CFT, the size of black hole grows again and reach a size of r+/ls ∼ 5.51 at k = k0.

It is interesting to see that there is the ultimate black hole size at very stringy regime

implied by the unitarity of the internal CFT. If there is no such a unitary constraint, then

k can reach 9/4 which will result in a infinite size black hole.

In summary, the dependence on k of our Hagedorn temperature implies that the con-

jectured strings/black hole correspondence in AdS3 space will yield a black hole of stringy

size when AdS radius is of the order of the string scale, but yield a black hole with large

size when AdS radius is far larger than the string scale.
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2πk

βAdS

βAdS

r+

β

2πk

r+

O βAdS/2π

4π2k

βAdS

Figure 4: The inverse temperature-radius relation for BTZ black hole.

6. Strings on BTZ

In this section, we consider the string theory on BTZ black hole background, which is

obtained from the one on thermal AdS3 through the SL(2, Z) transformation on the moduli

parameter of the boundary torus [34] (see [35] for a review). According to this relation, the

thermal and angular directions interchange their roles under the SL(2, Z) transformation,

e.g., the thermal winding modes of string in AdS3 will become the angular winding modes of

string in BTZ. Thus we obtain a part of the partition function of strings on BTZ. Here the

resulting partition function does not contain the winding modes in the thermal direction

thus it may not describe whole degrees of freedom on the BTZ. However, one can expect

it still captures some part of the physics on it, as we will see shortly.

The moduli parameters for both sides are given

τAdS =
iβ

2π
√

k
, τBTZ =

iβBTZ

2π
√

k
(6.1)

respectively, and they are related through the modular transformation as τ = −1/τBTZ

then we have a relation between the inverse temperatures of strings in AdS3 and on BTZ

as follows

βBTZ =
4π2k

β
. (6.2)

Thus we obtain the partition function of strings on BTZ. Here we denote only on the part

relevant to Hagedorn divergence which is given

zBTZ(βBTZ) ∼
∫

dτ2 · · · exp

(

−(4π2k/βBTZ)2 − β2
AdS

4πτ2

)

. (6.3)
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It should be noted that the exponential factor is originated from the winding modes along

not the thermal but the angular direction. This becomes diverge when

βBTZ ≥ 4π2k

βAdS
≡ βHag

BTZ. (6.4)

This is the Hagedorn11 inverse temperature of the strings on BTZ. It is interesting to see

that the string ensemble goes to diverge when the temperature is lower than the (βHag
BTZ)−1 as

opposed to the ordinary case. This simply implies that BTZ black hole of low temperature

is unstable due to the existence of stringy winding tachyon, even though it has a positive

specific heat as implied by the gravity approximation. We can estimate, by noting (5.6),

the size of the BTZ black hole at the Hagedorn temperature as (see figure 4.)

r
(min)
+ =

βAdS

2π
. (6.5)

The BTZ black hole smaller than this minimal size has a stringy halo in that the tachyon

associated with the angular winding modes develops. As noted before, βAdS is of string

scale so is the r
(min)
+ . This indicates the stringy α′ correction to the gravity approximation

makes the string size BTZ black hole unstable, as one will expect for string theory to be a

theory of quantum gravity.

As we mentioned above our thermal partition function on BTZ is not a complete one.

A piece of evidence for this is the partition function (6.3) near the Hagedorn temperature

behaves as

zBTZ(βBTZ) ∼
∫

dE · · · e(βBTZ−βHag
BTZ)E (6.6)

which has wrong Boltzmann weight, i.e. normally it should be e−βBTZE , and leads to

pathological canonical ensemble entropy and micro-canonical ensemble density of states.12

Thus though we have obtained a criterion about the minimal size of the stable BTZ black

hole background based on (6.4), we do not exclude a possibility that there is another

Hagedorn temperature which gives rise to the thermal Hagedorn divergence to the BTZ

partition function far above the temperature (βHag
BTZ)−1. If this turns out to be the case,

even a large black hole which is considered to be a final phase at high temperature as we

argued before might not the ultimate one.

7. Comments and conclusion

We would like to comment on the case with non-zero chemical potential µ. One may wonder

if we can generalize the above treatment for µ = 0 case to the µ 6= 0 one. It turns out the

integrand in the partition function after taking the τ2 → 0 limit is still too complicated to

perform the necessary saddle-point approximation. Here we only give the partial result for

the partition function in s = 0 sector, i.e., z0.

11We use the term Hagedorn here because the divergence in (6.3) bears the Hagedorn form, it should be

distinguished from the thermal Hagedorn divergence.
12To figure out the micro-canonical ensemble density of states, one should correctly specify the contour

direction for the inverse Laplace transform (4.7). The result is negative and thus pathological.
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Similar to the µ = 0 case, after some analysis on the asymptotic behaviors of the

factors in the theta function near the origin, we have

z0(β) ≃ Vint

2

∫

∆0

d2τ

4τ2

β(1 − 2/k)1/2

(4π2τ2)(cint+1)/2
|τ |cint−1

∣

∣

∣
sin

(

πUτ̄

|τ |2
)

∣

∣

∣

−2

× exp

[

(cint + 1)πτ2

6|τ |2 − (1 − 2/k)β2

4πτ2
+

β2

2π|τ |2
((

µ2 − 1

k

)

τ2 −
2µτ1√

k

)]

. (7.1)

Unlike the µ = 0 case, we can not solve the saddle-point equation in closed form, therefore,

it is hard to extract the Hagedorn density of states in this case. However, the critical

temperature is supposed to be read off from the exponential term by substituting τ1/τ2 =

µ
√

k, i.e., the “pole line” of the s = 0 sector, and the result is

βAdS,µ =

√

2π2(cint + 1)

3(1 + µ2k)
=

βAdS
√

1 + µ2k
(7.2)

where βAdS is the Hagedorn inverse temperature without chemical potential found before.

It is interesting to see that the Hagedorn temperature increases as the chemical potential

increases. We think this result is acceptable because number of state decreases if we fix

angular momentum of system. Then higher temperature than β−1
AdS may be required to get

sufficiently large number of states to realize the Hagedorn behavior.

It should be emphasized that we have to justify whether βAdS,µ is actual Hagedorn

temperature in µ 6= 0 case or not. One might wonder that if other pole lines or inside

region of ∆s gives Hagedorn behavior at some temperature lower than βAdS,µ. This is an

interesting question and we leave it as an open problem.

In summary, we have extracted the Hagedorn behavior of thermal AdS3 string from

the exact 1-loop partition function. We find that there exists a non-trivial Hagedorn tem-

perature given in (3.32) which depends on the AdS radius scale. Besides, the corresponding

canonical free energy and micro-canonical density of states resemble the ones for the flat

space Hagedorn string with cint +1 non-compact dimensions. We also argue that the extra

non-compact dimension encoded in the Hagedorn thermodynamics is the radial direction of

AdS. The main technical and conceptual difficulties in deriving our results are the presences

of the space-like long string configurations. In resolving these difficulties we have carefully

taken care of the IR divergence and the extract the Hagedorn behavior by a well-defined

saddle point approximation. Our results have some implication to the formulation of a

correspondence principle for the formation of BTZ black hole from Hagedorn AdS strings.

In contrast to the stringy size black hole formation from flat space Hagedorn strings, we

find that the size of the condensed black hole could be large compared to the string scale

if the AdS radius is large compared to the string scale. However, when the AdS radius is

of order of the string scale we find that the corresponding black hole has a maximal size

of order of the string scale due to the unitarity constraint for internal CFT. We do not

know at this moment if this fact is implied by some deep truth for string theory at string

scale and it deserves further study. We also examine strings on BTZ background obtained
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through SL(2, Z) transformation on the boundary torus of AdS3. We find a tachyonic

divergence when a BTZ black hole is of order of the string scale and it provides a mini-

mal size for stable BTZ black hole by taking into account the α′ correction to the gravity

approximation.

We hope our results will be helpful to understand the nature of the Hagedorn thermo-

dynamics of string theory in the generic gravitational backgrounds.
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A. Sub-dominant contribution form s 6= 0 sectors

Unlike the flat string case, here we have infinite number of pole lines inside the strip

domain R. To capture the full Hagedorn thermodynamics of the AdS3 string, we need to

evaluate the contribution of these s 6= 0 pole lines to the partition function in each sub-

strip ∆s 6=0. Especially, we would like to examine the asymptotic behavior of each factor

in |ϑ(τ, iβ/2π
√

k)|2 given in (3.3) at τ2 → 0 near small τ1,τ2 region, also near the zeros of

this function.

As argued in discussing the s = 0 sector, the factor (1 − e−2πir/τ ) in |ϑ(τ, iβ/2π
√

k)|2
goes to 1 in the small τ1, τ2 region. And in this region the sin factor behaves as

∣

∣

∣
sin

(

πUτ̄

|τ |2
)

∣

∣

∣
≃ exp

(

β|τ1|
2
√

k|τ |2

)

. (A.1)

The asymptotic behaviors of these two factors are independent of s, the remaining two

factors in (3.3) are not.

The exponents of the other two factors
∏∞

r=1(1 − e−2πi(r+U)/τ ) and
∏∞

r=1(1 −
e−2πi(r−U)/τ ) in (3.3) are

1

|τ |2

[

τ2
β√
k

(

− 2πr
√

k

β
∓ τ1

τ2

)

− i

(

2πrτ1 ∓
βτ2√

k

)

]

. (A.2)

In the above, the upper-sign part corresponds to the first factor, and the lower-sign one

to the second factor. Inside the sub-strip ∆s 6=0 defined in (3.12), the real part in (A.2) is

constrained by

− 2π(s + 1 + r)
√

k

β
< −2πr

√
k

β
− τ1

τ2
≤ −2π(s + r)

√
k

β
, (A.3)

2π(s − r)
√

k

β
≤ −2πr

√
k

β
+

τ1

τ2
≤ 2π(s + 1 − r)

√
k

β
. (A.4)

– 24 –



J
H
E
P
0
9
(
2
0
0
7
)
0
4
2

From (A.3), we see that the real part is negative for all r such that the factor
∏∞

r=0(1 −
e−2πi(r+U)/τ ) goes to 1 at τ2 → 0. However, from (A.4) we see that the real part is negative

for r > s and is positive for r < s, so that at τ2 → 0
∏∞

r=s+1(1 − e−2πi(r−U)/τ ) → 1 and

∣

∣

∣

s−1
∏

r=1

(1 − e−2πi(r−U)/τ )
∣

∣

∣
≃

∣

∣

∣

s−1
∏

r=1

e−2πi(r−U)/τ
∣

∣

∣
= e

1
2|τ |2

“

−2πs(s−1)τ2+2(s−1)
βτ1√

k

”

. (A.5)

Finally, for r = s there are infinite number of poles lying on the boundary of the sub-strip,

therefore we just do not further simplify it. Combined all the above, the theta function in

the small τ2 region inside the sub-strip ∆s>0 behaves like

|ϑ1(τ, U)| ≃ |τ |−1/2 exp

[

1

2|τ |2
{(

β2

2πk
− π

2
− 2πs(s − 1)

)

τ2 + (2s − 1)
βτ1√

k

}]

×
∣

∣

∣

(

1 − exp

[

1

|τ |2
[

−2πsτ2 ±
βτ1√

k
− i

(

2πsτ1 ±
βτ2√

k

)]])

∣

∣

∣
. (A.6)

Thus we have for s ≥ 1

zs(β) ≃ 2Vint

∫

∆s

drdθs

4 sin θs

β(1 − 2/k)1/2rcint−1

(4π2r sin θs)(cint+1)/2
exp

[

g(θs)

r

]

×
∣

∣

∣

(

1 − exp

[

1

r

[

−2πs sin θs ±
β cos θs√

k
− i

(

2πs cos θs ±
β sin θs√

k

)]])

∣

∣

∣

−2
(A.7)

where

g(θs) = −k − 2 cos2 θs

4πk sin θs
β2 − (2s − 1)| cos θs|√

k
β +

(cint + 1 + 12s(s − 1))π sin θs

6
. (A.8)

Here we have changed to the polar coordinate by defining

τ1 = r cos θs, τ2 = r sin θs. (A.9)

In performing the integration of θs, the contribution from the boundary would dominate

the integral, thus we may regard it as a sharp saddle-point. In fact, it would give large con-

tributions since it contained infinitely many poles before the regularization. The boundary

of the sub-strip ∆s is located at θs = θ̄s with

tan θ̄s =
β

2πs
√

k
. (A.10)

By setting θs to θ̄s in (A.6) just to extract the large boundary contribution, we have

zs(β) ≃ Vint

2

∫

∆s

dr

4 sin θ̄s

β(1 − 2/k)1/2rcint−1

(4π2r sin θ̄s)(cint+1)/2
exp

[

g(θ̄s)

r

]

×
∣

∣

∣

(

1 − exp

[

− i

r

(

2πs cos θ̄s ±
β sin θ̄s√

k

)])

∣

∣

∣

−2
, (A.11)

where

g(θ̄s) =
β(β2

c − β2)

4π
√

β2 + 4π2s2k
(A.12)
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with

β2
c = 4π2

(

4k − 9

k − 2
− ks2

)

. (A.13)

If we interpret 1/r as the energy, then we can extract the density of states from (A.11) and

examine the possible Hagedorn behavior. Note that the second line in (A.11) contains the

regularized poles but shows no exponential behavior for Hagedorn density of states. These

poles can be understood as the long sting configurations discussed in [16, 17]. Instead, the

Hagedorn behavior is encoded in the factor exp
[

g(θ̄s)
r

]

. However, β2
c is always negative or

zero as can be easily seen. In fact, it becomes zero only when k = 3, s = 1. Therefore, we

conclude that there is no Hagedorn behavior in the sectors ∆s 6=0. That is, the ∆s=0 sector

dominates the Hagedorn behavior over the others, and we need to only consider this sector

when discussing the Hagedorn thermodynamics.
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L. Álvarez-Gaumé, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action,

AdS5 black holes and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227];
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